Introduction to Scenario Sessions

Lars Strupeit

Malé Declaration: Emission inventory preparation / scenarios / atmospheric transport modelling and soil acidification workshop UNEP RRCAP, Bangkok, Thailand. 28 January to 1 February 2008

Outline

What have we done in previous workshops?

- o July 2006
- February 2007
- What will we do in the scenario sessions in this workshop?
 - o January 2008

July 2006 workshop

- What are scenarios and what is their purpose?
 - Scenario types and characteristics e.g.
 - quantitative vs qualitative
 - forecasting vs backcasting
 - What are emission scenarios?
 - Examples of scenarios work done
- Backcasting exercise
 - o "Imagine a South Asian city in 2026."
 - o example for a qualitative scenario

Feedback obtained after the July 2006 workshop

About which topics would you like to learn more to support your professional work?

How to conduct an Emission Scenario

Feedback obtained after the July 2006 workshop

About which topics would you like to learn more to support your professional work?

Tools and modeling approaches for emission scenarios

Lund University, Sweden

February 2007 workshop

- What are emission scenarios?
- Exercise: Building scenarios and Integrated Assessment with SIM-AIR tool
 - SIM-AIR: tool to conduct Integrated Assessment and building scenarios on a city level
 - Baseline and Alternative Policy Scenarios
 - Evaluation and optimization of policy options for air pollution prevention and control

SIM-AIR model

🔤 Mi	crosoft Excel - RAPIDC SIM-AIR 2.0	modified_270207.xls				<u>_ 8 ×</u>
:2	Datei Bearbeiten Ansicht Einfüge	en Forma <u>t</u> E <u>x</u> tras Dat		Frage hier ein	geben 🛛 🗕 🗗 🗙	
10		IV 🗈 🙉 - 🛷 1 10	- M - I 🖾 🎱 - S - A I Z	🌆 🚜 80% 🖕 🚳 🗍 🖓 🖕		
: 🛄		1 00 HE LA 1 🗸 1 -/	· (- · ↓€ 📚 ∠ · Z ↓ A		<u>ک</u> ور دا	
Aria	• 7 • F K	U 📰 🚍 📑 📑 📑	學 % 000 € 號 🐝 💷 1	🖹 🔃 + 🦄 + 🗛 + 🌉		
	F8 ▼ <i>f</i> ×			<u> </u>		
	A B	C D E F	G H	I J K L M N O	P Q R S T	UVV X
2	Summary Sheet	CBL - Current Baselin	ne: TRL - Target Vear Baseline:	TC - Target Year Controlled		
3	outlinely offoot	2007 2017	2017	CBL	TBL	тс
4	Total Emissions (tons/year)	CBL TBL	TC Change TBL > TC	PM10 2278 12102 3390 2534	2788 14366 3863 3043	2788 14366 3863 30
5	PM10	106.841 120.836	120.836 0%	Ems 10779 8556 12782 2686	12763 8908 13731 3050	12763 8908 13731 30
6	SO2	136.242 163.666	163.666 0%	4203 12782 13728 7350 5419 2652 2164 2427	4955 13731 14680 8736	4955 13731 14680 87
8	CO2	22.970.364 21.246.956	21246.956 0%	0410 2003 3104 243r	0040 3003,3 3000 2032	0040 3003 3000 20
9			-C	CBL	TBL	тс
10	% Contribution (PM10 Emissions)			<u>83 110 126 95</u>	93 125 141 107	93 125 141 10
11	Domestic	8% 9%	9% 0%	PM10 117 129 131 102	132 143 146 115	132 143 146 11
12	Open Burning Industries	13% 16%	16% U%	Conc 111 126 138 110 107 120 88 86	125 141 154 126	125 141 154 1.
14	Brick Kilns	1% 1%	1% 0%		122 100 00 01	122 100 00 0
15	PRD	26% 23%	23% 0%	Options	Cost	(M\$) Min Max
16	Power Plants	15% 16%	16% 0%	Conversion of Diesel to CNG E	Buses 0%	0 100
17	Transport	21% 18%	18% 0%	Low Sulfur Diesel (p	pm S) 2000	15 2000
18				Scrappage 2st to 4 st for	2-VVn U%	
20	Average PM10 Concentration	111 125	125 0%	Removal of 3-Whe	eelers 0% 1 1	
21	% Change from CBL	13%	13%	Trucks Using By	ypass 0% 💶 🕨 -	0 100
22				Coal to LPG for Dor	nestic 0% 💶 🕨 🤇	0 100
23	Mortality Effects Reduced		- Persons	nestic 0% 4 -	0 100	
24	Resp. Symptoms days Reduced		- thousand days	Wood to LPG for Dor Improving Eff in Brick		
26	nearch costs Avoided		- 1111 03\$	Impoving Eff in Indu	ustries 0% 4	
27	For Target Controlled - Tons/yr	PM10 SO2	NOx CO2	Promoting Public Tran	nsport 0% 💶 🕨 -	0 20
28	Domestic	10.642 7.471	4.737 9.251.184	Introduction o)f BRT 0% 4 -	0 100
29	Open Burning	18.836 18.836	18.836 18.836	Shift of Brick	(Kilns 0%	0 100
30	Industries Briek Kiloa	19.784 39.568	3.510 -	L& M program for Payed Road Wet Cla	cars U%	
32	PRD	27.869 -		Improving Cooksto	ve Eff 0%	0 100
33	Power Plants	19.677 83.626	4.526 590.304	Conversion of Gas Taxis to	o LPG 0% 🕘 🕨 🤇	0 100
34	Transport	22.273 11.483	86.589 9.924.350	Controlling Open Bu	urning 0% 💶 🕨 🤇	0 100
35	Total	120.836 163.666	119.075 21.246.956		Tota 0	<u> </u>
36	Desired Reduction TRL > TC	0% 0%	0% 0%		Budget \$500	/ million
38	Searca Reduction TBL > 10			Optimization-Se	stup Solve	
39	Desired (tons/year)	120.836 163.666	119.075 21.246.956			
40				Copy to Scenario 1 Cop	py to Scenario 2 Copy to Sc	enario 3
41	Target (tons/year)	120.836 163.666	119.075 21.246.956			
∎ ∎	Main Scen_Comps Help	Health_Impacts 🔏 Emiss	_Distribution 🔏 Emss_Dist_Base	📝 Domestic 🥻 Vehicles 🔏 Brickkilns 🔏		
Bereit						NE

Current Baseline (CBL) = emission inventory

Building baseline scenario by assuming a higher transport volume

Vehicle Characteristics - Target Year = 2017			Emission Factors (gm/km)				Total Emise					
Vehicle Type	## Vehicles	VKT (km/day)	PM10	SOx	NOx	CO2	DM40		- MOX	CO2	🛛 🖞 Annu	al Growth Rates
2 Wheeler - 2st	740.122	20	0,10	0,08	0,30	70,0	Ar	nua	1.621	378.202	1,0%	
2 Wheeler - 4st	977.337	20	0,02	0,02	0,10	50,0			713	356.728	5,0%	
3-Wheeler - 2st	179.085	40	0,10	0,08	0,30	70,0	gr	owtr	784	183.025	6,0%	
3-Wheeler - 4st	35.817	40	0,02	0,02	0,10	50,0	rat		f	46	6,0%	
Car/Jeep/Van-Gasoline	1.343.916	30	0,40	0,08	1,00	150,0	ιαι	C 3 U	4.7	.383	3,0%	
Car/Jeep/Van-Diesel	814.447	30	0,95	0,30	1,50	250,0	ve	hicle	3.377	2.229.550	5,0%	
Car/Jeep/Van-CNG	35.265	30	0,20	0,08	0,80	100,0			309	38.615	3,5%	
Car/Jeep/Van-LPG	35.265	30	0,20	0,08	0,80	100,0	nur	nper	`S 309	38.615	3,5%	
Taxi-Gasoline	10.305	100	0,35	0,12	1,00	200,0	152	40	376	75.228	7,5%	
Taxi-Diesel	1.708	100	0,90	0,50	1,50	300,0	56	31	94	18.704	5,5%	
Taxi-CNG	640	100	0,10	0,10	0,80	100,0	2	2	19	2.336	2,5%	
Taxi-LPG	1.031	100	0,10	0,10	0,80	100,0	4	4	30	3.761	7,5%	
Medium Bus - Diesel	67.041	100	1,60	0,80	17,00	1.000,0	3.915	1.958	41.599	2.447.015	5,3%	
Medium Bus - CNG	5.187	100	0,70	0,40	12,00	500,0	133	76	2.272	94.672	10,0%	
Large Bus - Diesel	51.203	130	1,60	0,80	17,00	1.000,0	3.887	1.944	41.303	2.429.600	2,5%	
Large Bus - CNG	3.258	130	0,70	0,40	12,00	500,0	108	62	1.855	77.291	5,0%	
LD Truck - Diesel	107.513	50	2,50	2,20	2,20	1.000,0	4.905	4.317	4.317	1.962.118	1,0%	
HD Truck - Diesel	13.439	300	2,50	2,20	2,20	1.200,0	3.679	3.237	3.237	1.765.906	3,0% 🖪	
						Total	32.289	16.384	126.984	14.334.895		
						% Chang	45,0%	42,7%	46,7%	6 44,4%		

Baseline scenario

							•	Aver emise	age sion				
Vehicle Characteristics - Target Year = 2017				SOV	m) CO2 PM11			aciu	12 111	n 	% Annual Growth Pates		
2 Wheeler - 2st	740 122	20	0.10	0.08	0.30	70.0			tard	let	378 202	4.0%	
2 Wheeler - 4st	977 337	20	0,10	0,00	0,00	50.0		1			356 728	5.0%	
3-Wheeler - 2st	179.085	4	0,02	0.02	0,10	70.0		,	yea	al	183.025	6.0%	
3-Wheeler - 4st	35.817		0,10	0,00	0,00	50.0		<mark>مار</mark> 10	10	52	26 146	6.0%	I
Car/Jeep/Van-Gasoline	1,343,916	80	0.40	0.08	1.00	150.0	4.8	386	1.177	14,716	2.207.383	3.0%	
Car/Jeep/Van-Diesel	814.447	30	0.95	0.30	1.50	250.0	84	172	2.675	13.377	2.229.550	5.0%	
Car/Jeep/Van-CNG	35,265	30	0.20	0.08	0.80	100.0		77	24	200	20 645	2 50/	
Car/Jeep/Van-LPG	0,20	0,08	0,80	100,0		71	Even	ven without policy					
Taxi-Gasoline 10.305				0,12	1,00	200,0		32	inton	ontio	n the	beo fi	
Taxi-Diesel	1.708	100	0,90	0,50	1,50	300,0		56	interv		n, uie	20 II	Jules
Taxi-CNG	640	100	0,10	0,10	0,80	100,0			are li	kely to	o cha	nge II	n the
Taxi-LPG	1.031	100	0,10	0,10	0,80	100,0		4	future	e dile	to rec	gular	
Medium Bus - Diesel	67.041	110	1,60	0,80	17,00	1.000,0	1.9	913	rabay			chiel	fleat
Medium Bus - CNG	5.187	100	0,70	0,40	12,00	500,0	1	33	renev	val of	the v	enicie	e fieet
Large Bus - Diesel	51.203	130	1,60	0,80	17,00	1.000,0	3.8	387	Noto: C				model
Large Bus - CNG	3.258	130	0,70	0,40	12,00	500,0	1	08	inote: 5		k 2.0 dC	bes not	model
LD Truck - Diesel	107.513	50	2,50	2,20	2,20	1.000,0	4.9	905	these c	changes	S		
HD Truck - Diesel	13.439	300	2,50	2,20	2,20	1.200,0	3.6	679	3.237	3.237	1.765.906	3,0%	
						Total	32.2	289	16.384	126.984	14.334.895		
						% Chang	45	,0%	42,7%	46,7%	44,4%		

the international institute for industrial environmental economics Lund University, Sweden

Building alternative policy scenarios

This workshop (January 2008)

- Case study: IEA Energy Scenarios for India for 2030
- Methodologies for the building of emission scenarios
 - Economic development and energy demand
 - Energy demand, energy prices and fuel mix
 - Energy demand versus electricity demand
 - Technology change
 - Policy intervention

This workshop (January 2008)

- Exercise: Building emission scenarios for India for 2030
- Two stages
 - 1. Building energy scenarios and change of emission factors
 - Feed this data into scenario sheets of the Emission Inventory Workbook to calculate emission scenarios for your countries for 2030
- Presentation of results / discussion of further needs

ADDITIONAL SLIDES

- What are emission scenarios?
- What are emission scenarios used for?

What are emission scenarios?

- A plausible quantitative description of how emissions in the future may develop, based on a coherent and internally consistent set of assumptions ("scenario logic") about key relationships and driving forces.
 - Emission scenarios are neither predictions nor forecasts.

(adapted from IPCC)

General approaches for emission scenarios

socio-economic

- correlate emissions with socio-economic time series, such as GDP development, without accounting in detail for technological change
- o top-down approach
- technology based
 - o considers explicitly technological change
 - emission factor approach is widely used, mainly due to the fact that technological change became a prevailing parameter
 - bottom-up approach, can be rather detailed and resourceintensive

Technology-based, bottom-up approach

Technology-based, bottom-up approach

The fundamental formula

E: emissions

- A: activity rate
- F: process level emission factors
- P: activity share or penetration rate of a technology within a sector
- k: technology type

Source: EEA

lllee

The fundamental formula

Data sources for emission inventories (PAST)

- E: emissions
- A: activity rate
- F: process level emission factors
- P: activity share or penetration rate of a technology within a sector
- k: technology type

The fundamental formula

Data sources for emission inventories (PAST)

The link between inventories and projections / scenarios

 Each emission projection must be based on an existing emission inventory as a starting point.

The link between inventories and projections / scenarios

- Each emission projection must be based on an existing emission inventory as a starting point.
- The main difference between an emission inventory and an emission projection / scenario is the <u>time</u> reference.

What do we use emission scenarios for?

 The role of emission scenarios in the Air Quality Management Cycle

Linking the air pollution scientific community with policy makers

Integrated Assessment Modelling (IAM)

- IAM models the air quality management cycle numerically.
- IAM collects and connects data from different sources to obtain a comprehensive picture of reality.
- Emission scenarios are typically one component of Integrated Assessment Models for air quality management.
- Scenarios are used as a tool to explore how reality <u>may</u> evolve under a set of different assumptions

Scenarios in IAM

Emission scenario variants

the international institute for industrial environmental economics Lund University, Sweden

Emission scenarios...

- ...are an important tool to design and assess emission reduction strategies, which aim at achieving given emission reduction targets in the future
- ...help to evaluate alternative abatement options to achieve these targets within given scenarios of societal trends
- ...help to allocate emission abatement measures in a temporal and spatial frame and to assess the future efficiency of a large variety of measures

Outline

- 1. Integrated Assessment Modelling (IAM) in the Air Quality Management process
- 2. Emission scenarios
- 3. Example: the *Clean Air for Europe (CAFÉ)* scenarios

The CAFE programme of the EU

- Clean Air for Europe (CAFE) is an EU programme of technical analysis and policy development to support EU strategies with regard to air pollution
- CAFE aims to develop a long-term, strategic and integrated policy advice for "achieving levels of air quality that do not give rise to significant negative impacts on and risks to human health and the environment"; including "no exceedance of critical loads and levels for acidification or eutrophication".

The CAFE programme of the EU

CAFE uses IAM and scenarios

- to project how air quality in Europe is likely to evolve until 2020 on the basis of current policies and measures
- to provide a benchmark against which other policy scenarios can be compared.
- to assist the cost-effectiveness analysis of policy proposals for revised air quality legislation
- The scenarios address four environmental impacts of air pollution:
 - Particulate matter (PM)
 - Ground-level ozone (O_3)
 - Acidification
 - Eutrophication

CAFE Scenarios

Five scenarios for the year 2020

- baseline scenario based on current legislation projection (CLE)
- maximum technically feasible emission reductions (MTFR)
- three joint optimizations (A, B, C) that combine with each other the lowest, medium and highest ambition levels of all four environmental endpoints (PM, O₃, acidification, eutrophication)

Loss in life expectancy attributable to exposure to fine particulate matter (PM_{2.5})

4 6 6 9 9 12 12 36 36

Statistical loss in life expectancy in months

2000

Source: IIASA

Baseline scenario

for 2020

the international institute for industrial environmental economics Lund University, Sweden

Loss in life expectancy attributable to exposure to fine particulate matter (PM_{2.5})

2000

Baseline CLE (2020)

Alternative A (2020)

Alternative B (2020)

the international institute for industrial environmental economics Lund University, Sweden

Alternative C (2020)

Source: IIASA

Acid deposition to forest ecosystems

for 2020

Percentage of forest area receiving acid deposition above the critical loads

Source: IIASA

Baseline scenario

the international institute for industrial environmental economics Lund University, Sweden

Excess nitrogen deposition

Percentage of total ecosystems area receiving nitrogen deposition above the critical loads for eutrophication

Source: IIASA

the international institute for industrial environmental economics Lund University, Sweden

Impacts of ozone on the reduction of wheat yields

Baseline scenario for 2020

Alternative policy scenario C for 2020

Loss of wheat yield in the EU due to ozone (Tons)

Source: IIASA

the international institute for industrial environmental economics Lund University, Sweden

43